Sound detection by the Longfin Squid (Loligo pealeii) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure

ShareThis
TitleSound detection by the Longfin Squid (Loligo pealeii) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure
Publication TypeJournal Article
Year of Publication2010
AuthorsMooney, A. T., R. T. Hanlon, C. - D. J., P. T. Madsen, P. E. Nachtigall, and D. R. Ketten
JournalJournal of Experimental Biology
Start Page3748
Issue213
Pagination3748-3759
Date Published2010
Type of ArticleScientific
Keywordsacceleration, auditory, auditory evoked potentials, cephalopod, hearing, invertebrate, loligo pealeii, longfin squid, low frequency, particle motion, pressure, sound detection, statocyst
AbstractAlthough hearing has been described for many underwater species, there is much debate regarding if and how cephalopods detect sound. Here we quantify the acoustic sensitivity of the longfin squid (Loligo pealeii) using near-field acoustic and shaker generated acceleration stimuli. Sound field pressure and particle motion components were measured from 30 to 10,000 Hz and acceleration stimuli were measured from 20 to 1000 Hz. Responses were determined using auditory evoked potentials (AEPs) with electrodes placed near the statocysts. Evoked potentials were generated by both stimuli and consisted of two wave types: (1) rapid stimulus-following waves, and (2) slower, high-amplitude waves, similar to some fish AEPs. Responses were obtained between 30 and 500 Hz with lowest thresholds between 100 and 200 Hz. At the best frequencies, AEP amplitudes were often >20 uV. Evoked potentials were extinguished at all frequencies if (1) water temperatures were less than 8°C, (2) statocysts were ablated, or (3) recording electrodes were placed in locations other than near the statocysts. Both the AEP response characteristics and the range of responses suggest that squid detect sound similarly to most fish, with the statocyst acting as an accelerometer through which squid detect the particle motion component of a sound field. The modality and frequency range indicate that squid probably detect acoustic particle motion stimuli from both predators and prey as well as low-frequency environmental sound signatures that may aid navigation.