in mysticetes can be as great as in odontocetes with membranes in some species ranging from
100 um at the base (similar to the base in humans) to 1600 um at the apex. The apical widths in
mysticetes are 3X that of human, 3-5X those of most odontocetes, and 1.2X that of elephants,
which are known to perceive infrasonics (Payne et al. 1986).

Comparing bat, odontocete, and mysticete basilar membrane thickness to width (T:W) ratios
is a good exercise in structure-function relationships. T:W ratios are consistent with the
maximal high and low frequencies each species hears and with differences in their peak spectra
(Ketten and Wartzok, 1990; Ketten, 1992; Ketten, 1997). Echolocators have significantly
higher basal ratios than mysticetes, and odontocete ratios are higher than for bats in the basal
regions where their ultrasonic echolocation signals are encoded. For example, Phocoena, a
Type I odontocete, has a basal T:W ratio of 0.9 and a peak frequency of 130 kHz. Tursiops, a
Type II odontocete, has a T:W ratio of 0.7 and a peak signal of 70 kHz, and Rhinolophus, a bat,
a 0.3 T:W ratio and a 40 kHz echolocation signal. All three have terminal apical ratios near
0.01. Mysticete T:W ratios range from 0.1 at the base to ~0.001 at the apex; i. e., the mysticete
basal ratios are equivalent to mid-apical ratios in the three echolocators and decrease steadily to
a value one-tenth that of odontocetes at the apex. The exceptionally low apical ratio in
Mysticeti is consistent with a broad, flaccid membrane that can encode infrasonics.

A striking feature of odontocete basilar membranes is their association with extensive outer
bony laminae. In mammals, ossified outer spiral laminae are hallmarks of ultrasonic ears
(Yamada 1953, Reysenbach de Haan 1956, Sales and Pye 1974, Ketten 1984). Thick outer
bony laminae are present throughout the basal turn in all odontocetes, and the proportional
extent of outer laminae is functionally correlated with odontocete ultrasonic frequency ranges
(Ketten and Wartzok 1990). In the basal, high frequency region of the cochlea, odontocete
basilar membranes resemble thick girders, stiffened by attachments at both margins to a rigid
bony shelf. In Type I echolocators with peak frequencies above 100 kHz an outer lamina is
present for 60% of the cochlear duct (Figure 6). Type II echolocators with lower peak
frequencies have a bony anchor for ~30% of the duct. The Type I basilar membrane therefore is
coupled tightly to a stiff ledge for twice as much of its length as a Type Il membrane. If Type I
and Type II membranes have similar thickness:width ratios, a Type I cochlea with longer outer
laminae would have greater membrane stiffness and higher resonant frequencies than an
equivalent position in a Type 1I membrane without bony support. Both membrane ratios and
the extent or proportion of auxiliary bony membrane support are important mechanistic keys to
how odontocetes achieve ultrasonic hearing despite ear size.

Both inner and outer laminae are present in mysticete cochleae but they are morphologically
and functionally very different from those of odontocetes. Mysticete outer laminae are narrow
spicules located on the outer edge of the spiral ligament. They do not attach to the basilar
membrane. The broad, thin mysticete basilar membrane attaches only to a flexible spiral
ligament. It is likely that the spike-like outer lamina in mysticetes is a remnant of an ancestral
condition rather than a functional acoustic structure and that low basilar membrane ratios and
large Organ of Corti mass are the principal structural determinants of mysticete hearing ranges.
To date, few mysticete species have been analyzed for very low frequency sensitivity, but the
inner and middle ear anatomy argues strongly that they are low to infrasonic specialists.

Pinnipeds
Outer Ear
Pinniped ears are less derived than cetacean ears. The external pinnae are reduced or absent.

Ear canal diameter and closure mechanisms vary widely in pinnipeds, and the exact role of the
canal in submerged hearing has not clearly been determined. Otariids have essentially
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terrestrial, broad bore external canals with moderate to distinctive pinnae. Phocids, particularly
M. angustirostris, spend more time in water than otariids and have only a vestigial cartilaginous
meatal ring, no pinnae, and narrow ear canals (Ketten and Schusterman, unpublished).
Although the phocids have no external pinna, it is not yet known which species normally have
air-filled vs. partial to fully blocked external canals. No specialized soft tissue sound paths for
underwater hearing been clearly demonstrated in seals.

An obvious amphibious adaptation in phocid ears is that the external canal is well-developed
and has a ring of voluntary muscle that can close the meatus (Mohl 1967, Repenning 1972). It
has been suggested that seal middle ears are capable of operating entirely liquid-filled
(Repenning 1972) and that various soft tissue attachments to the ossicles are related to the
operation of a liquid-filled middle ear or for enhancing high-frequency sensitivity in water
(Ramprashad et al. 1972, Renouf 1992), but neither of these suggestions is consistent with the
level of development of the external canal or the size and development of the Eustachian tube.
Whether the external canal remains patent and air-filled, collapses, or becomes flooded during
dives remains a heavily debated subject. The ear canal contains a corpus cavernosum
(cavernous epithelium) analogous to that in the middle ear, which may close the canal and
regulate air pressures during dives (Mohl 1968, Repenning 1972). There are strong theoretical
arguments for each position. Flooding the canal would provide a low impedance channel to the
tympanic membrane, but then directing sound input to only one window of the cochlea becomes
a problem. If the middle ear is fluid-filled, the oval and round windows can receive
simultaneous stimulation that would interfere with normal basilar membrane response.
However, if the canal remains air-filled, it poses the problem of an impedance mismatch that
could make the canal less efficient for sound conduction to the middle and inner ear than
surrounding soft tissues when the animal is submerged. To date, there is no clear evidence for
specialized soft tissues, like those found in odontocetes, and no direct measures of the shape of
the ear canal when submerged.

The position and attachment to the skull of the tympanic and periotic bones in pinnipeds is
not significantly different from that of land mammals. The middle ear space is encased in a
tympanic bulla, a bulbous bony chamber with one soft-walled opening, the tympanic
membrane. The tympanic bulla is fused to the periotic. Both have partially or fully ossified
articulations with the skull. These connections are less rigid than those in some land mammals,
but the ears are not as clearly detached (and acoustically isolated) as those of cetaceans.

Middie Ear

Pinniped middle ears have a moderate layer of cavernous tissue, but it is less developed than
that of cetaceans (Mghl 1968, Ramprashad et al. 1972, Repenning 1972, Fleischer 1978).
Pinniped ossicular chains are diverse: those in otariids resemble terrestrial carnivores; ossicles
of phocids are more massive but with large species variation in shape (Doran 1879, Fleischer
1978), which suggests a wider range of peak frequencies and more emphasis on lower
frequency reception than in otariids. Although some authors indicate phocids have small
eardrums (Repenning 1972) the size is not significantly different from that of equivalent mass
land mammals. The oval and round window areas in terrestrial mammals are of approximately
the same size. In pinnipeds, the oval window can be one-half to one-third the size of the round
window. Eardrum to oval window ratios have been cited frequently as a factor in middle ear
gain, but this association is still being debated (Rosowski, 1994), and depending upon the exact
size distributions among these three membranes in each pinniped species, there could be wide
differences in middle ear amplification among pinnipeds.
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Inner Ear

Relatively few pinniped inner ears have been investigated and published data that are
available are largely descriptive (Ramprashad ef al. 1972; Solntseva 1990). Most pinnipeds
have inner ears that resemble terrestrial high frequency generalists; i.e., multiple turn spirals
with partial laminar support. Preliminary data on larger species suggest they may have some
low frequency adaptations consistent with their size. There is no indication of extensive
adaptation for either high ultrasonic or infrasonic hearing. Pinnipeds have one feature in
common with cetaceans; i.e., a large cochlear aqueduct. Mghl (1968) suggested that this would
facilitate bone conduction, but the mechanism is not clear, nor is it consistent with equally large
aqueducts in odontocetes.

Sirenians

Anatomical studies of sirenian ears are largely descriptive (Robineau 1969, Fleischer 1978,
Ketten er al. 1992). Like Cetacea, they have no pinnae. Also, the tympano-periotics are
constructed of exceptionally dense bone, but like pinnipeds (and unlike odontocetes), manatee
ear complexes are partly fused to the inner wall of the cranium. Neonate ears vary less than
20% in shape and size from adult specimens; consequently, the ear complex is
disproportionately large in young manatees and can constitute 14% of skeletal weight (Domning
and de Buffrénil 1991).

Outer Ear

Exact sound reception paths are not known in manatees. The unusual anatomy of the
zygomatic arch, combined with its relation to the squamosal and periotic have made it a
frequent candidate for a sirenian analogue to the odontocete fat channels. The periotic is tied by
a syndesmotic (mixed fibrous tissue and bone) joint to the squamosal which is fused to the
zygomatic process which is, in turn, a highly convoluted, cartilaginous labyrinth filled with
lipids. The zygomatic is, in effect, an inflated, oil-filled, bony sponge that has substantial mass
but less stiffness than an equivalent process of compact bone (Domning and Hayek 1986,
Ketten et al. 1992). In the Amazonian manatee, the best thresholds in evoked potential
recordings were obtained from probes overlying this region (Bullock ez al. 1980, Klishin et al.
1990), but no clear acoustic function has been demonstrated

Middle Ear

The middle ear system of sirenians is large and mass dominated but the extreme density of
the ossicles adds stiffness (Fleischer 1978, Ketten et al. 1992). The middle ear cavity, as in
other marine mammals, is lined with a thick, vascularized fibrous sheet. The ossicles are
loosely joined and the stapes is columnar, a shape that is common in reptiles but rare in
mammals and possibly unique to manatees. The tympanic membrane is everted and supported
by a distinctive keel on the malleus. Deeply bowed, everted tympanic membranes, epitomized
by the fibrous "glove finger" in mysticetes, are common in marine mammals but are relatively
rare in non-aquatic species. Like eardrum of cats, the manatee tympanic membrane has two
distinct regions, implying membrane response patterns are frequency-dependent (Pickles 1982).
The tympanic-oval window ratio is approximately 15:1 in 7. manatus , which places it mid-way
between that of humans and elephants (Ketten et al. 1992, Rosowski 1994). Chorda tympani, a
branch of the facial nerve (cranial nerve VII) which traverses the middle ear cavity, is relatively
large in manatees. It is crosses the middle ear but has no known auditory function. In humans,
chorda tympani is ~10% of the facial nerve, conveys taste from the anterior two-thirds of the
tongue, and carries parasympathetic pre-ganglionic fibers to the salivary glands. In T. manatus,
chorda tympani forms 30% of the facial nerve bundle.
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Inner Ear

The sirenian inner ear is a mixture of aquatic and land mammal features. Anatomically, T
manatus inner ears are relatively unspecialized. The cochlea has none of the obvious features
related to ultra- or infra- sonic hearing found in cetacean ears. Basilar membrane structure and
neural distributions are closer to those of pinnipeds or some land mammals than to those of
cetaceans (Ketten et al. 1992). The outer osseous spiral lamina is small or absent and the basilar
membrane has a small base to apex gradient. At the thickest basal point, the membrane is
approximately 150 pm wide and 7 pm thick; apically it is 600 pm by 5 um. The manatee
therefore has a relatively small basilar membrane gradient compared to cetaceans, which is
consistent with the audiometric profile and 7 octave hearing range recently reported for T.
manatus (Gerstein ef al. 1993). Spiral ganglion cell densities are low compared to odontocetes
(500/mm), but auditory ganglion cell sizes (20 pm X 10 pum) are larger than those of many land
mammals.

Fissipeds

Remarkably little is known about sea otter, Enhydra lutris, hearing even in comparison to
the sirenians.

E. lutris has a well-defined external ear flap and a canal which is open at the surface.
Kenyon (1981) indicated that the pinnal flange folds downward on dives, which suggests the
canal is at least passively closed during dives, but there are no data on whether specialized
valves are associated with the ear canal like those found in pinnipeds. Otter auditory bullae are
attached to the skull and resemble those of pinnipeds. CT scans of E. lutris (Ketten,
unpublished) show that their middle and inner ears are grossly configured like ears of similarly
sized terrestrial carnivores, with the same orientation and 2.5 turn distribution. Spector (1956)
and Gunn (1988) both indicated an upper frequency limit of 35 kHz for common river otters
which have similar ear anatomy.

Mechanisms of Acoustic Trauma
Temporary and Permanent Threshold Shifts

Noise trauma is a well-investigated phenomenon for air-adapted ears (see Lehnhardt, 1986;
Lipscomb, 1978; and Richardson, et al., 1991 for reviews). For the sake of completeness in the
following discussion, noise trauma has been divided into lethal and sublethal impacts. Lethal
impacts are those that result in the immediate death or serious debilitation of the majority of
animals in or near an intense source; i.e., profound injuries related to shock wave or blast effects
which are not, technically, pure acoustic trauma. Lethal impacts are discussed briefly at the end
of this section. Sublethal impacts are those in which a hearing loss is caused by exposures to
sounds that exceed the ear's tolerance to some acoustic parameter; i.e., auditory damage occurs
from metabolic exhaustion or over-extension of one or more inner ear components. Of course,
sublethal impacts may ultimately be as devastating as lethal impacts, causing death indirectly
through behavioural reactions, such as panic, as well as impaired foraging or predator detection,
but the potential for this type of extended or delayed impact from any sound source is not well
understood for any mammal.

To determine whether any one animal or species is subject to a sublethal noise impact from a

particular sound requires understanding how its hearing abilities interact with that sound.
Basically, any noise at some level has the ability to damage hearing by causing decreased
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sensitivity. The loss of sensitivity is called a threshold shift. Not all noises will produce
equivalent damage at some constant exposure level. The extent and duration of a threshold shift
depends upon the synergistic effect of several acoustic features, including how sensitive the
subject is to the sound. Most recent research efforts have been directed at understanding the
basics of how frequency, intensity, and duration of exposures interact to produce damage rather
than interspecific differences: that is, what sounds, at what levels, for how long, or how often
will commonly produce recoverable (TTS - Temporary Threshold Shift) vs permanently (PTS)
hearing loss.

Three fundamental effects are known at this time:

1) the severity of the loss from any one signal may differ among species.
2) for pure tones, the loss centers around the incident frequency.
3) for all tones, at some balance of noise level and time, the loss is irreversible.

Hearing losses are recoverable (TTS - temporary threshold Shift) or permanent (PTS)
primarily based on extent of inner ear damage the received sound causes (see Lipscomb 1978,
Lehnhardt 1986, Richardson et al. 1991 for reviews). Temporary threshold shifts (TTS) will be
broad or punctate, according to source characteristics. The majority of studies have been
conducted with cats and rodents, using relatively long duration stimuli (> 1 hr.) and mid to low
frequencies (1-4 kHz) (see Lehnhardt, 1986, for summary). Inner ear damage location and
severity are correlated with the power spectrum of the signal in relation to the sensitivity of the
animal. Virtually all studies show that losses are centered around the peak spectra of the source
and are highly dependent upon the frequency sensitivity of the subject. For narrow band, high
frequency signals, losses typically occur in or near the signal band, but intensity and duration can
act synergistically to broaden the loss.

It has also been established that repeated exposures to TTS level stimuli without adequate
recovery periods can induce permanent, acute threshold shifts. Liberman (1987) showed that
losses were directly correlated with graded damage to the outer and inner hair cells, and that the
majority of cells recover. With short duration, narrow band stimuli, recovery periods can vary
from hours to days. In effect, the duration of a threshold shift, is correlated with both the length
of time and the intensity of exposure. In general, if the duration to intense noise is short and the
noise is narrow, the loss is limited and recoverable. Based on both the available experimental
data and on human data from occupational hearing loss, moderate to protracted exposures to a
signal intensity of 80 dB or more over the individual threshold at each frequency for land species
is required for significant threshold shifts (see NIH./CDC, 1990; Yost, 1994 for overview).
These findings led to the current allowable limit of 80-90 dB re 20 pPa for human workplace
exposures for broad spectrum signals, as well as an allowance of the 3-5 dB increase in exposure
as a trade-off for halving of exposure times (Lehnhardt, 1986). While the commonality of 80 dB
suggests that TTS is a dynamic range dependent phenomenon which is probably related to
fundamental mammalian inner ear mechanisms, this specific dB criterion for exposure limits
cannot be supported nor refuted with current data for marine mammals, particularly since some
marine species have inner ear adaptations that could alter these responses (see Marine Mammal
Issues section).

Given the complex nature of the interaction of species-specific hearing parameters with each
signal feature a simplistic rule for species dependent impacts based on any one acoustic feature
or hearing characteristic is not possible, as is shown in a quick review of Table 3. Some broad
trends do emerge, however, from inter-species comparisons of sources that induce TTS in air.

At the grossest level, TTS effects from approximately equivalent exposures appear to be

inversely related to weight or mass; i.e., effects were less pronounced in humans than in cat or in
chinchilla, but this may be a secondary effect of frequency sensitivities differing also with animal
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size. The majority of effects appear to be species independent, suggesting that basic cochlear
mechanisms may be the dominating factor. Effects that were common to all species were the
following:

Shifts were strongly dependent on interactions of timing, level, and frequency.
Cumulative or compound effects are common.

Asymptotic shifts appear to depend on similar metabolic and mechanical fatigue
phenomena.

Hearing impaired individuals have approximately the same absolute exposure limit for
TTS as unimpaired individuals, which is manifested in an apparently smaller exposure
window prior to TTS.

4. Effects spread primarily upward in frequency, which is a reflection of the basilar
membrane's tonotopic organization and the asymmetric distribution of the traveling wave
envelope (Fig. 4).

Frequency discrimination is unaffected.

. Temporal integration is reduced.

N

(98]

o

Effects that showed strong species dependence were:

1. Loss at a particular frequency are correlated with species sensitivity.
2. Losses at all frequencies are correlated with metabolic, hair cell, and neural differences
throughout the cochlea.

The majority of PTS effects are minimally species dependent, but nevertheless equally
complex. One important aspect of PTS is that signal rise-time and duration of peak pressure are
significant factors. If the exposure is short, hearing is recoverable; if long, or has a sudden,
intense onset and is broadband, hearing, particularly in the higher frequencies, can be
permanently lost (PTS). Experimentally, PTS is induced with multi-hour exposures to narrow
band noise. In humans, PTS results most often from protracted, repeat intense exposures (e.g.,
occupational auditory hazards from background noise) or sudden onset of intense sounds (e.g.,
rapid, repeat gun fire). Sharp rise-time signals have been shown also to produce broad spectrum
PTS at lower intensities than slow onset signals both in air and in water (Lipscomb, 1978;
Lehnhardt, 1986; Liberman, 1987). Hearing loss with aging (presbycusis) is the accumulation of
PTS and TTS insults to the ear. Typically, high frequencies are lost first with the loss gradually
spreading to lower frequencies over time.

In experiments, multi-hour exposures to narrow band noise are used to induce PTS. As noted
above, most mammals with air-adapted ears incur losses when the signal is 80 dB over threshold.
TTS has been produced in humans for frequencies between 0.7 and 5.6 kHz (our most sensitive
range) from underwater sound sources when received levels were 150-180 dB re 1 pPa (Smith
and Wojtowicz 1985, Smith et al. 1988). Taking into account differences in measurements of
sound pressure in air vs. water (equations 4 and 5), these underwater levels are consistent with
the 80-90 dB exposure levels that induce TTS in humans at similar frequencies in air. Sharp rise-
time signals produce broad spectrum PTS at lower intensities than slow onset signals both in air
and in water (Lipscomb 1978, Lehnhardt 1986).

Blast Effects

Simple intensity related loss is not synonymous with blast injury. Acoustic trauma induced
by sudden onset, loud noise ( a "blast" of sound) is not synonymous with blast trauma, nor are
noise and blast effects of the same magnitude. Blast injuries generally result from a single
exposure to an explosive shock wave which has a compressive phase with a few microseconds
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initial rise time to a massive pressure increase over ambient followed by a rarefactive wave in
which pressure drops well below ambient.

Blast injuries may be reparable or permanent according to the severity of the exposure and
are conventionally divided into three groups based on severity of symptoms, which parallel those
of barotrauma:

MILD - Recovery MODERATE - Partial loss SEVERE - Permanent loss - death
Pain Otitis media Ossicular Fracture/Dislocation
Vertigo Tympanic membrane rupture Round/Oval window rupture
Tinnitus Tympanic membrane hematoma  CSF leakage into middle ear
Hearing Loss Serum-blood in middle ear Cochlear and saccular damage
Tympanic tear Dissection of mucosa

Moderate to severe stages result most often from blasts, extreme intensity shifts, and trauma;
i.e., explosions or blunt cranial impacts that cause sudden, massive systemic pressure increases
and surges of circulatory or spinal fluid pressures (Schuknecht, 1993). Hearing loss in these
cases results from an eruptive injury to the inner ear; i.e., with the rarefactive wave of a nearby
explosion, cerebrospinal fluid pressures increase and the inner ear window membranes blow out
due to pressure increases in the inner ear fluids. Inner ear damage frequently coincides with
fractures to the bony capsule of the ear or middle ear bones and with rupture of the eardrum.
Although technically a pressure induced injury, hearing loss and the accompanying gross
structural damage to the ear from blasts are more appropriately thought of as the result of the
inability of the ear to accommodate the sudden, extreme pressure differentials and over-pressures
from the shock wave.

At increasing distance from the blast, the effects of the shock wave lessen and even though
there is no overt tissue damage, mild damage with some permanent hearing loss occurs (Burdick,
1981, in Lehnhardt, 1986). This type of loss is generally called an asymptotic threshold shift
(ATS) because, as was found with protracted exposures in TTS experiments, ATS derives from a
saturation effect. Like TTS, the hair cells are damaged, but as in PTS, recovery is unlikely to
take place. Because ATS depends upon complex interactions of rise time and wave form, not
simply intensity at peak frequency, hearing losses are typically broader and more profound than
simple PTS losses.

There is no well defined single criterion for sublethal ATS from blasts (Roberto, et al., 1989),
but eardrum rupture, which is common to all stages of blast injury, has been moderately well
investigated. Although rupture per se is not synonymous with permanent loss (eardrum ruptures
have occurred at as little as 2.5 kPa overpressure and are strongly influenced by the health of the
ear), the incidence of tympanic membrane rupture is strongly correlated with distance from the
blast (Kerr, & Byrne, 1975). As frequency of rupture increases so does the incidence of
permanent hearing loss. In zones where >50% tympanic membrane rupture occurred, 30% of the
victims had long term or permanent loss.

Recent experimental work has shown that weighted sound exposure level is a more robust
predictor of permanent loss than peak pressure (Patterson, 1991). Data with weighted levels are
rare; overpressure data are more common and have been shown to be highly correlated with
received levels (Roberto ef al., 1989). In general, complex and fast-rise time sounds cause
ruptures at lower overpressures than slow-rise time waveforms, and smaller mammals will be
injured by lower pressures larger animals. Of the animals tested to date, sheep and pig have
ears anatomically closest to those of whales and seals. The air-based data for pigs and sheep
imply that overpressures <70 kPa are needed to induce 100% tympanic membrane rupture.
However, cross-study/cross-species comparisons and extrapolations are risky because of
radically different experimental conditions as well as differences in acoustic energy
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transmission in the air and water. The data available for submerged and aquatic animals imply
that lower pressures in water than in air induce serious trauma (Myrick et al., 1989; see also
summary in Richardson, ef al. 1991). For submerged terrestrial mammals, lethal injuries have
occurred at overpressures >55 kPa (Yelverton, 1973, in Myrick, et al., 1989; Richmond, et al.,
1989). In a study of Hydromex blasts in Lake Erie the overpressure limit for 100% mortality
for fish was 30 kPa (Chamberlain, 1976). The aquatic studies imply therefore that
overpressures between 30 and 50 kPa are sufficient for a high incidence of severe blast injury.
Minimal injury limits in both land and fish studies coincided with overpressures of 0.5 to 1 kPa.

Marine Mammal Issues

Major impacts from noise can be divided into direct physiologic effects, such as permanent
vs. temporary hearing loss, and those that are largely behavioral, such as masking, aversion, or
attraction. Although there is no substantial research accomplished in any of these areas in marine
mammals, behavioral effects have been at least preliminarily investigated through playback and
audiometric experiments, while marine mammal susceptibility to physiologic hearing loss is
virtually unexplored. Despite increasing concern over the effects on marine mammals of man-
made sound in the oceans, we still have little direct information about what sound frequency-
intensity combinations damage marine mammal ears, and at present there are insufficient data to
accurately determine acoustic exposure guidelines for any marine mammal.

Is acoustic trauma even moderately debatable in marine mammals? Recalling the paradox
mentioned earlier, there are a variety of reasons to hypothesize that marine mammals may have
evolved useful adaptations related to noise trauma. Vocalizations levels in marine mammals
are frequently cited as indicating high tolerance for intense sounds. Some whales and dolphins
have been documented to produce sounds with source levels as high as 180 to 220 dB re | pPa
(Richardson et al., 1991; Au, 1993). Vocalizations are accepted indicators for perceptible
frequencies because peak spectra of vocalizations are near best frequency of hearing in most
species, but it is important to recall that the two are not normally precisely coincident.

It must be borne in mind also that animals, including humans, commonly produce sounds
which would produce discomfort if they were received at the ear at levels equal to levels at the
production site, and arguments that marine mammals, simply by nature of their size and tissue
densities, can tolerate higher intensities are not persuasive. First, mammal ears are protected
from self-generated sounds not only by intervening tissues (head shadow and impedance
mismatches) but also by active mechanisms (eardrum and ossicular tensors). These
mechanisms do not necessarily provide equal protection from externally generated sounds
largely because the impact is not anticipated as it is in self-generated sounds. Our active
mechanisms are initiated in coordination and in anticipation of our own sound production. Just
as the level of a shout is not indicative of normal or tolerable human hearing thresholds, source
level calculations for vocalizations recorded in the wild should not be viewed as reliable
sensitivity measures. As was indicated earlier, while there is little question of anomalous
dysfunction of the middle ear in pinnipeds, middle ear function continues to debated for
cetaceans. However, it is very important to recall also that cetaceans do have very well
developed middle ear anatomies, including stapedial ligaments (Ketten, 1984; 1992) which
argues that they have the capability for middle ear attenuation responses. Further, the large
head size of a whale is not acoustically exceptional when the differences in pressure and sound
speed in water vs. air are taken into account. As noted earlier, ear separation in a bottle-nosed
dolphin is acoustically equivalent to that of a rat when the distances are corrected for the speed
of sound in water. Exactly how head size in water affects attenuation of incident sound at the
inner ear has not been investigated and remains an important open question.
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Data from several pilot studies may, however, provide some useful insights into both facets
of the paradox. In one investigation (detailed below, Ketten et al, 1993; Lien et al. 1993), ears
from humpbacks that died following underwater explosions had extensive mechanical trauma
while animals that were several kilometers distant from the blasts and at the surface showed no
significant behavioral effects. These findings indicate adaptations that prevent barotrauma do
not provide special protection from severe auditory blast trauma, but it remains unclear whether
lower intensity purely acoustic stimuli induce temporary and/or acute threshold shifts in marine
mammals.

A second study compared inner ears from one long-term captive dolphin with a documented
hearing loss with the ears of one juvenile and two young adult dolphins (Ketten et al., 1995).
CT, MRI, and histologic studies of the oldest dolphin ears showed cell loss and laminar
demineralization like that found in humans with presbycusis, the progressive sensorineural
‘hearing loss that accompanies old age. The location and degree of neural degeneration in this
animal implied a substantial, progressive, hearing loss beginning in the high frequency regions.
This too is consistent with the pattern commonly observed in humans. Frequency-position
estimates of the elder animal's hearing loss done blind; i.e., without prior knowledge of its
audiogram, predicted a profound loss for all frequencies >58 kHz. A review of the animal's
behavioral audiogram subsequently showed that over a 12 year period this dolphin's hearing
curve shifted from normal threshold responses for all frequencies up to 165 kHz to no functional
hearing over 60 kHz prior to his death at age 28. For this animal at least, the conclusion was that
significant hearing loss had occurred attributable only to age-related changes in the ear. Similar
significant differences in the hearing thresholds of two Zalophus have also been reported by
Kastak and Schusterman (1995) that are consistent with age-related hearing differences between
the animals but which are also consistent with protracted exposures to construction noise.

Micrographs from young adult dolphin ears show several important cochlear duct cellular
adaptations that are markedly different from those of conventional land mammals and seals.
Transmission electron micrographic studies revealed dolphins have active fibrocytes in the
spiral ligament and four times as many cell layers in stria vascularis as any other mammal. The
stria is considered to be the principal dictator of mammalian cochlear metabolism. If these
results are confirmed in other dolphin ears, these structural differences could mean dolphins
have faster hair cell recovery times than air adapted ears and may therefore be less subject to
temporary threshold shifts than most land animals or pinnipeds.

Unfortunately, these data only beg the question. The problem of hearing loss has not been
realistically considered prior to this point in any systematic way in any marine mammal. In
fact, the most studied group, odontocetes, have generally been thought of as ideal underwater
receivers. A captive animal's age or history is not normally considered in analyzing its auditory
responses, and, in the absence of overt data (e.g., antibiotic therapy), we assume a test animal
has a normal ear with representative responses for that species. It is not clear that this is both
reasonable and realistic. Particularly when data are obtained from one animal, it is important to
question whether that hearing curve is representative of the normal ear for that species. The
pilot studies noted clearly suggest age and/or exposure to noise can significantly alter hearing in
marine mammals. In fact, in some cases (compare the two curves shown in figure 3a for
Tursiops), "individual differences" that are seen in "normal" audiograms for two animals from
the same species may be the result of undetected hearing loss in on of the animals. The fact that
some studies show losses in marine mammals consistent with age-related hearing changes and
disease considerably complicates the diagnosis and assessment of hearing loss from
anthropogenic sources based on small samplings of populations. Natural loss should be
considered in any animal for which there is little or no history, therefore the finding of a single
animal with some hearing decrement in the vicinity of a loud source cannot be taken as a clear
indicator of a population level hazard from that source. On the other hand, because of the
importance of hearing to these animals, it is also unlikely that a high incidence of loss will be
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normally found in any wild population, and a finding of substantial hearing loss from, for
instance, a mass-stranding or fishery coincident with a long-term exposure to an intense source
would be appropriate cause for significant concern.

Given the minimal state of marine mammal data, the only comprehensive database that can
be brought to bear at this time for predicting physiologic impacts is from acoustic trauma
studies of land mammals and fish.

Few reports exist that detail injuries in marine mammals from blast induced trauma. Bohne et
al. (1985) reported on inner ear damage in Weddell seals that survived blasts, but they were
unable to determine exposure levels or number of exposures for each animal. There are scattered
reports of opportunistic examinations of animals exposed to large blasts, including one on otters
with extensive trauma from nuclear explosions (Richardson et al., 1991) that concluded that
peak pressures of 100-300 psi were invariably lethal. Recently, several humpbacks exposed to
TOVEX blasts were shown to have severe blast injuries (Ketten et al., 1993). TOVEX, like
Hydromex, is a TNT clone explosive similar to HBX-1 with a detonation velocity of ~7500
m/sec (Ketten, 1994). Received levels in the humpbacks could not be calculated with
confidence; however, the charge weights associated with the injuries ranged from 1700 to 5000
kg. The animals died within three days of the blasts, and the extent of the injuries found implied
they were close to the blast site. Mechanical trauma in these ears included round window
rupture, ossicular chain disruption, bloody effusion of the peribullar spaces, dissection of the
middle ear mucosa with pooled sera, and bilateral periotic fractures. These observations are
consistent with classic blast injuries reported in humans, particularly with victims near the
source who had massive, precipitous increases in cerebrospinal fluid pressure and brain trauma.
There was no evidence of ship collision or prior concussive injury in these humpbacks, and no
similar abnormalities were found in ears from humpbacks not exposed to blasts. These findings
imply that despite adaptations in whales and seals that minimize barotrauma, marine mammals
are not immune to blast trauma. Given the similarities of seal and whale ears to land mammal
ears, it is clear that explosions and the shock wave and intense transient sound field that result
can produce both blast injury and acoustic trauma in marine animals. More important, even
though the whale ear is ostensibly a fluid-to-fluid coupler, marine mammals, having retained an
air-filled middle ear (Ketten, 1994), are subject to all ranges of compressive-rarefactive/blast

injury.

The level of impact from blast will depend on both an animal's location and, at outer zones, on
its sensitivity to the residual noise. Factors that are most important for trauma from explosive
sources are the following:

Topography

Proximity of ear

Anatomy and health of ear

Charge weight and type

Rise time

Overpressure

Pressure and duration of positive pressure phase

Nk

Topographic effects for open ocean are minimal for most boat deployed sources. Surface
reflections will have a significant effect on the blast and acoustic wave spread patterns at some
depth that is largely dependent on detonation depth. This effect also complicates predictions of
received levels for animals at surface or within the air-sea boundary layer.

The health of individual ears that may be impacted cannot be estimated in advance. It is

reasonable to assume an average distribution. Many explosives (TNT clones and water-gel
explosives;e.g., HBX, Tovex, etc.) currently in use have high detonation velocities and are
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therefore effectively an instantaneous onset, high peak pressure, broad spectrum blast.
Consequently, effects of the acoustic signature and certainly of the blast wave from these charges
are likely to be similar in all species in the target area; i.e., individual hearing ranges are largely
irrelevant in assessing TTS/PTS and blast effects in the near field, except for those species that
have no discrete air pockets.

Although multiple parameters are associated with both lethal and sublethal effects, virtually
all studies agree fairly closely on baseline criteria for lethal or compulsory injury zones for fast-
rise time, complex waveforms: ~ 30-50 kPa peak overpressure in water and > 180 dB re 20 pPa
in air (~240 dB re 1 pPa in water), (Chamberlain, 1976; Yelverton and Richmond, 1981;
Phillips et al., 1989: Richmond, et al.,, 1989; Myrick, et al.,, 1989). If, for comparison, the
lowest otter impact estimate were chosen (100 psi), the impact range is substantially greater.
Depending upon this range of criteria, a lethal impact zone limit for a 1200 1b source could be
placed at 40 m. (absolute minimum, land mammal) or 300 m (conservative estimate of 100 psi
based on otter observations). For a 10,000 1b. charge, the equivalent min-max limits for a killing
ground are 70 m to 800 m. If a conservative average overpressure of ~30 kPa is used as the
criterion, the lethality limit for both large charges is approximately 100 m. in comparison to
approximately 10 m. and 50 m. for the 9 and 50 Ib. charges.

Criteria for differentiating PTS or ATS zones from TTS are less clear. For this discussion,
peak pressures of ~150 psi, which are consistent with 50% incidence of eardrum rupture (30%
hearing loss) in larger mammals were chosen to define PTS/ATS limits. For a 9 1b. charge,
pressures that result in significant auditory damage can be expected along a long axis radius of
nearly 50 m. from the source. For a 50 Ib charge, the equivalent PTS/ATS radius is nearly 100
m. For the 1200 and 10,000 Ib charges, the transitional lethal zones in which serious sublethal
injury will predominate are estimated as 300 m and 750 m, respectively Beyond these zones,
the relative incidence of PTS to TTS will largely depend on individual susceptibility. That is,
the variables that will determine TTS vs PTS are highly dependent on both species-specific
and individual ear factors.

There is consensus in the literature on the criteria for an outer limit for mild TTS zones. 5-15
psi is accepted as the frontier at which TTS and detectable injury become rare (Yelverton and
Richmond, 1981; Smith et al., 1985, 1988; Myrick et al., 1989; Roberto et al, 1989). This is also
the zone in which the greatest differences are found in effects among charge weights. For 9 Ib.
charges, moderate incidence of TTS may be expected up to 700 m from the epicenter; the 50 1b
TTS zone could extend to 1600 m in contrast to a 5 and 10 km radius from the heavier charges
before the acoustic impact could be expected to drop precipitously.

Acoustic Devices, Fisheries, and Mitigation Measures
Potential impacts

Although the remainder of this discussion is concerned with purely physiologic elements of
the effects of sound, it is important first to note that acoustic trauma per se is only one side of a
significant effect coin.

Acoustic trauma is a very real and appropriate physiologic concern. It is also one for which
we can obtain a metric that will allow us to provide a usable limit. That is, given that we know
sound level X induces TTS while Y induces PTS, for frequency Z in a specific species, we can
apply these data to the estimated exposure curve for that species and determine its risk of
hearing loss. As discussed earlier, this is the basic principle behind both the 80 dB/5 dB rule
currently in use for workplace exposures. Because of the importance of hearing to marine
mammals, understanding how man-made sources may impact that sense is an important and
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reasonable step towards minimizing adverse impacts from man-made sound sources in the
oceans, but it is imperative that we employ a scientifically valid, marine specific meter-stick for
underwater exposures.

Above all, it is equally important to consider that sub-trauma levels of sound can have
profound effects on individual fitness that propogate to the population level. These effects can
take the form of masking of important signals, including echolocation signals, intra-species
communication, and predator-prey cues; of disrupting important behaviors through startle and
repellence, or of acting as attractive nuisances, all of which may alter migration patterns or
result in abandonment of important habitats. Unfortunately, these issues are beyond the scope
of this document as well as the expertise of the author and therefore cannot be productively and
responsibly discussed here. Nevertheless, it is important to at least note the concern, and above
all to suggest that there is a substantial need for field monitoring of behaviors in wild
populations in tandem with controlled studies directed at expanding our audiometric data and
understanding of acoustic trauma mechanisms.

As indicated earlier, there are no discrete data at this time that provide a direct measure of
acoustic impact from a calibrated, underwater sound source for any marine mammal.
Preliminary data from work underway on captive cetaceans and pinnipeds (Ridgway, pers.
comm.; Schusterman, pers. comm.) suggest that odontocetes may have asymptotic responses
while pinnipeds are more similar to land mammals in their dynamic range for threshold shift
effects. This response difference as well as the difference in hearing ranges - if these data are
shown to be robust - suggest that pinnipeds are the more acoustically fragile group from most
anthropogenic sound sources and that odontocetes are relatively immune or require substantially
higher sound levels to incur TTS.

In terms of the specifics of tuna-marine mammal-echo-ranging device interactions, the
principal acoustic concern is to determine a balance of frequencies vs. level vs. duty cycle that
will effectively detect and census commercially viable schools at long ranges but will not repel
the target species nor harm marine mammals within that sound field. To accomplish these goals
it is necessary to determine and balance the following components:

1. What are the effective frequencies for longer range detection? Presumably this will
require a moderately low frequency for maximizing distance of detection balanced
against a need to detect relatively small targets.

2. What is the hearing curve of the target species for capture? This feature must be
considered in order to avoid startle or repellent effects in the fish schools that are to be
detected by the source.

3. What are the hearing curves for non-target species within the sound field? This has
the same concern as the second component, with a different end objective; i.e., to avoid
impact or harassment but is driven also by an additional desire to prevent long-term,
multiple exposure effects that can compound the probability of hearing loss.

Put simply, the device must be able to detect fish without cueing them but at the same time
avoid frequency-intensity-sensitivity combinations likely to impact non-targeted, acoustically
fragile species. Detection devices proposed recently (see Nero, 1996; Rees, 1996; Denny et al.
1997) commonly employ frequencies in the low to mid-sonic ranges (50-5000 Hz) with a wide
set of emission algorithms, including repeat pulsed signals, and, in at least one scenario,
explosive/high intensity impulsive source. Source levels proposed vary widely but can range as
high as 235 dB re 1 pPa at 1 m. These spectra are coincident with virtually all marine mammal
hearing ranges, and ironically may be well perceived by at least some fish species. In fact, for
clupeids, recent data show a coincident high frequency sensitivity that suggests convergence of
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predator and prey auditory systems at both mid-sonic (2-4 kHz) and ultrasonic (20-40 kHz)
ranges (Popper, 1997). Rather than complicating the issue, this coincidence may prove
beneficial by driving the frequency choice in the same direction; i.e., avoiding these frequencies
may maximize the utility of the device for finding fish without disturbance of the school while
minimizing the probability of its impact on marine mammals.

Mitigation measures

For all species, the first issue in the proposed devices is signal shape, or rise time and peak
spectra. As discussed earlier, impulsive sound has substantial potential for inducing broad
spectrum, compounded acoustic trauma; i.e., an impulsive source can produce greater threshold
changes than a non-impulsive source with equivalent spectral characteristics. Consequently,
impulse is a complicating feature that may exacerbate the impact. Conventional suggestions for
minimizing such effects are to ramp the signal, narrow the spectra, lower the pressure, and/or
alter the duty cycle to allow recovery and decrease impact. Once again, however, it must be
recalled which, if any, of these measures is important to the marine mammal ear has not been
determined.

Given that impulsive noise can be avoided, the question devolves largely to the coincidence of
signal characteristics with species sensitivities. High intensity, ultrasonic devices of course have
enormous potential for serious impact on virtually every odontocete and their deployment in
pelagic fisheries raises the greatest concern after impulse or explosive sources. Such devices are
relatively unlikely to be employed, however, because they are unsuitable for longer range
detection. With high frequency sonic range devices, the possibility of profound impact from
disruption or masking of odontocete communication signals must certainly be considered, as well
as the possibility of coincident impacts to pinnipeds. Because the majority of devices proposed
use frequencies below ultra or high sonic ranges, odontocetes may be the least likely to be
impacted species. Most odontocetes have relatively sharp decreases in sensitivity below 2 kHz
(see fig. 3). If frequencies below 2 kHz are employed with a non-impulsive wave-form, the
potential for impacting odontocetes is likely to be drastically reduced, but it must also be borne
in mind that it is non-zero. In every case, the difference between some to little or no significant
physiologic impact will depend upon received levels at the individual ear. For the purposes of
general discussion, a theoretical comparison is shown in Figure 7 for marine mammals
audiograms compared with a human audiogram and with source levels of major anthropogenic
underwater noise sources. Because mechanisms and onset levels of TTS and PTS are still
unresolved for marine mammals, this curve is presented largely for the purposes of gross
comparisons of spectra of different sources with animal hearing ranges and is not intended to
suggest mitigation guidelines.

Mysticetes and the majority of pinnipeds have substantially greater potential than odontocetes
for direct acoustic impact from low to mid-sonic range devices. However, depending upon the
diving and foraging patterns of these animals in comparison to the sound field propagated to
detect fish, the risks to mysticetes and the majority of pinnipeds may be substantially less than a
simple sound analysis would imply. That is, given that substantial numbers of these marine
mammal groups are either not present or are infrequently found in the areas of tuna fisheries,
there is little probability of any one animal encountering a signal with an intensity and a period
of time that will induce acoustic trauma, despite their better absolute sensitivity to the signal.

Mitigation, like estimation of impact, requires a case by case assessment. At this time we
have insufficient data to accurately predetermine the underwater acoustic impact from any
anthropogenic source. Consequently, it is not possible to definitively state what measures will
ameliorate any one impact.
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For the immediate future and in the absence of needed data, a best faith effort at mitigation
must be founded on reasoned predictions from land mammal and the minimal marine mammal
and fish data available. It is reasonable to expect, based on the similarities in ear architecture and
in the shape of behavioral audiograms between marine and land mammals, that marine mammals
will have similar threshold shift mechanisms and will sustain acute trauma through similar
mechanical loads. Therefore, fast-rise impulse and explosive sources are likely to have greater or
more profound impacts than narrow band, ramped sources. Similarly, we can expect that a signal
that is shorter than the integration time constant of the odontocete, mysticete or pinniped ear or
which has a long interpulse interval has less potential for impact than a protracted signal,
however, simply pulsing the signal is not a sufficient strategy without considering adequate
interpulse recovery time. Strategies, such as compression, that allow the signal to be near or
below the noise floor are certainly worth exploring. Certainly, no single figure can be supplied
for these values for all species. Because of the exceptional variety in marine mammals ears and
the implications of this variety for diversity of hearing ranges, there is no single frequency or
combination of pulse sequences that will prevent any impact. It is however, reasonable, because
of species-specificities, to consider minimizing effects by avoiding overlap with the hearing
characteristics of species that have the highest probability of encountering the signal for each
device deployed.

Research Needs

To that end, substantially better audiometric data are required. This means more species
must be tested, with an emphasis on obtaining audiograms on younger, clearly unimpaired
animals and repeat measures from multiple animals. Too often our data base has be undermined
by a single measure from an animal that may have some impairment. It is equally important to
obtain some metric of the hearing impairments present in normal wild populations in order to
avoid future over-estimates of impact from man-made sources. To obtain these data requires a
three-pronged effort of behavioural audiograms, evoked potentials on live strandings, and post-
mortem examination of ears to determination of the level of "natural" disease and to hone
predictive models of hearing capacities. It should be noted also that equivalent auditory
databases are lacking for most commercially important fish species. Again, all of the
recommendations presented are applicable for the fish stocks of interest in this endeavor, and
coordinated or tandem research on both the commercially targeted and protected species that may
be impacted may be the most productive approach to the problem of determining an effective
frequency range for a device that balances effectiveness in fish censusing against minimal
impact.

The most pressing research need in terms of marine mammals is data from live animals on
sound parameters that induce temporary threshold shift and aversive responses. Indirect benefits
of behavioral experiments with live captive animals that address TTS will also test the
hypotheses that cellular structure in the inner ear of odontocetes may be related to increased
resistance to auditory trauma. Combined data from these two areas could assist in determining
whether or to what extent back-projections from land mammal data are valid.

Biomedical techniques, such as ABR and functional MRI, offer considerable potential for
rapidly obtaining mysticete and pinniped hearing curves. Evoked potential studies of stranded
mysticetes are of considerable value but must also carry the caveat of determining how reliable is
a result from a single animal that may be physiologically compromised. Post-mortem studies
should be considered on any animal that is euthanized after an ABR with the goal of both
providing data about the normality of the ear and supplying feedback to modeling studies of
hearing ranges. Otoacoustic emission experiments are not considered to be a viable approach for
cetaceans; they may provide basic hearing data in pinnipeds but are technically difficult.
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Playback studies are a well-established technique but because of the uncertainties about
individually received levels they may not considerably advance our knowledge of acoustic
impact per se unless tied to dataloggers or very accurate assessments of the animal's sound field.
Tagging and telemetry are valuable approaches particularly if linked to field or video
documentation of behavior that is coordinated with recordings of incident sound levels at the
animal. Telemetric measurement of physiological responses to sound; e.g., heart rate, may be
valuable, but little is currently known of how to interpret the data in terms of long term impact.

Permanent threshold shift data may be obtainable by carefully designed experiments that
expose post-mortem marine mammal specimens to either intense sound and explosive sources
since these effects are largely detectable through physical changes in the inner ear. These studies
would also substantially increase the species diversity of the available data base because most
marine mammal species will not be testable with conventional live animal audiometric
techniques. Lastly, because many impact models depend upon assumptions about received levels
at the ear, these projections would clearly be enhanced by basic measures on specimens of the
underwater acoustic transmission characteristics of marine mammal heads and ears.

Summary

Marine mammals are acoustically diverse with wide variations not only in ear anatomy, but
also in frequency range and amplitude sensitivity. In general their hearing is as acute as that of
land mammals, and they have wider ranges. Although marine mammals exhibit habitat and size
related hearing trends that parallel those of land mammals in that larger species tend to have
lower frequency ranges than smaller species, the majority of species have some ultrasonic
capability and there are multiple specialized, auditory adaptations in odontocetes that provide
large species exceptional high frequency hearing capabilities. Both mysticetes and odontocetes
appear to have soft tissue channels for sound conduction to the ear. Sirenians may have
analogous adaptations. It remains unclear whether pinnipeds use soft tissue channels in addition
to the air-filled external canal for sound reception. Comparisons of the hearing characteristics
of otarids and phocids suggest that there are at least two types of pinniped ears, with phocids
being better adapted for underwater hearing. Sea otter ears are the most similar to those of land
mammals of all marine mammal ears that have been investigated, but they do have some
aquatic-related features, and it is not known how well they hear underwater. No data are
available on polar bear hearing.

All marine mammals have middle ears that are heavily modified structurally from those in
terrestrial mammals in ways that reduce the probability of barotrauma. The end product is an
acoustically sensitive ear that is simultaneously adapted to sustain moderately rapid and extreme
pressure changes, and which appears capable of accommodating acoustic power relationships
several magnitudes greater than in air. It is possible that these special adaptations may
coincidentally provide acoustically protective mechanisms that lessen the risk of injury from
high intensity noise, but no behavioral or psychometric studies are yet available that directly
address this issue.

One irony of sensory system research is that the more tools we invent to explore animals and
their senses the greater the hints we receive that our reach is still too short. How extensive is
our research arm currently? We know marine mammals use frequencies we cannot hear but we
can technologically detect and transduce their frequency range into something we can analyze.
Tools that help us probe and visualize how marine mammal sounds are produced and processed,
like fast biomedical imaging, are helpful but still comparatively limited. The anatomical
sophistication and the extensive cortical space allotted to temporal divisions of the brain in
virtually all cetaceans, including baleen whales, implies a more important role for auditory
processing than we have previously expected. Our greatest short-coming is that we cannot yet
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measure or observe reliably and frequently in the truly relevant environment for marine
mammals: at depth in a free-ranging animal but technology that will make these studies routine
are rapidly becoming available - and ironically will certainly have to employ acoustics to obtain
definitive answers.
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Table 3.
(Data compiled from Lipscomb 1978; Lehnhardt 1986; Liberman 1987; Patterson 1991)

SOURCE LEVEL (dB) EXPOSURE TTS3¢ BAND
TIME (dB)

HUMAN
narrowband (<10 kHz) (occupational) 10 yrs (20-60) CF + 1/2 octave
500 Hz 81.5 48 hours 10.5 (3 day recovery)
500 Hz 92.5 29.5 hours 27.5 (asymptotic loss at

12 hrs.)
500 Hz 90 48 hours 27.5 (4 day recovery)
CAT
broadband noise 105 15 min. 20-40 2-8 kHz
broadband noise 115 7.5 min. 20-50 2-8 kHz
broadband noise, repeat 115 7.5 min. on 20-30 3.5 kHz

24 hrs off
broadband noise, repeat 115 7.5 min. on 30-50 2-8 kHz
1-6 hrs off (some
PTS)

500 Hz CF 105 8-48 hours 20-30 . 2-8 kHz
1 octave band (no PTS)
CHINCHILLA
500 Hz CF/1 octave band (100) 48 Hrs 40-45 2-8 kHz
500 Hz CF/1 octave band 100 7 days 60 0.75 kHz
500 Hz CF/1 octave band 75 7-21 days 30-35 0.15 - 8 kHz
4 KHz CF/1 octave band 86-98 9 days 20-35 3-8kHz

(15 day recovery)
SQUIRREL MONKEY
500 Hz CF/1 octave band 100 2 Hrs 30-40 0.5-2 kHz

(2 day recovery)
2 kHz CF/1 octave band 100 2 Hrs 40-50 2-6 kHz
pure tones 120 9-15 mins. 16-23 CF+1/2 octave

CF - Center Frequency of exposure band
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Figure 1. Audiograms of representative terrestrial mammals. Note that the ordinate is labeled
dB SPL and that thresholds are therefore at or near 0 dB in the regions-of best sensitivity for
most species. The histograms to the right of the audiograms show the distribution of peak
sensitivities and level at peak for each group. (Data compiled from Fay 1988, Yost, 1994,
Yost, ASA Bioacoustic Workshop Materials, MMS Biennial Conf., 1995).
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RECENT TECHNICAL MEMORANDUMS

Copies of this and other NOAA Technical Memorandums are available from the National Technical
Information Service, 5285 Port Royal Road, Springfield, VA 22167. Paper copies vary in price. Microfiche
copies cost $9.00. Recent issues of NOAA Technical Memorandums from the NMFS Southwest Fisheries
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